organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zuo-Liang Jing,* Wen-Wen Cheng, Xin Chen and Yu Ming

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: jzl74@tust.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å R factor = 0.034 wR factor = 0.101 Data-to-parameter ratio = 7.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2'-(1*H*-Indol-3-ylmethylene)isonicotinohydrazide ethanol solvate

In the crystal structure of the title compound, $C_{15}H_{12}N_4O$ - C_2H_6O , molecules are linked *via* weak intermolecular N-H···N, O-H···O and N-H···O hydrogen bonds, forming a two-dimensional network.

Comment

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa *et al.*, 1986; Santos *et al.*, 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands (Yu *et al.*, 2005; Deng *et al.*, 2005; Jing *et al.*, 2005; Guo *et al.*, 2006), we report the synthesis and structure of the title compound, (I).

The 4-pyridyl (C1–C6/N1) and 1*H*-indole-3-carbaldehyde (C7–C15/N4) units are planar, with r.m.s. deviations of 0.0117 (2) and 0.0140 (5) Å, respectively (Fig. 1). The dihedral angle between these planes is 43.60 (6)°. Intermolecular N– $H \cdots N$, O– $H \cdots O$ and N– $H \cdots O$ hydrogen bonds (Table 2) form a two-dimensional network (Fig. 2).

Experimental

An anhydrous ethanol solution (50 ml) of 1*H*-indole-3-carbaldehyde (1.46 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of pyridine-4-carboxylic acid hydrazide (1.37 g, 10 mmol) and the mixture was stirred at 330 K for 6 h under N_2 , whereupon a red solution appeared. The solvent was removed and the residue was recrystallized from anhydrous ethanol. The product was isolated and then dried *in vacuo* to give pure (I) in 86% yield. Red single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol solution.

Crystal data

 $C_{15}H_{12}N_4O \cdot C_2H_6O$ $M_r = 310.35$ Orthorhombic, $P2_12_12_1$ a = 9.6080 (14) Å b = 10.0047 (15) Å c = 16.791 (3) Å V = 1614.1 (4) Å³ Z = 4 $D_x = 1.277$ Mg m⁻³ Mo $K\alpha$ radiation Cell parameters from 4354 reflections $\theta = 2.4-24.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 294 (2) K Block, red $0.38 \times 0.22 \times 0.20 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved Received 24 February 2006

Accepted 7 March 2006

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.752, T_{\max} = 0.983$
8779 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.101$ S = 1.061651 reflections 219 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, $^\circ).$

O1-C6	1.236 (3)	N4-C14	1.375 (3)
N2-C6	1.330 (3)	C5-C6	1.495 (3)
N2-N3	1.392 (3)	C7-C8	1.437 (3)
N3-C7	1.278 (3)	C8-C9	1.445 (3)
N4-C15	1.347 (3)		
C6-N2-N3	120.33 (19)	C15-C8-C7	123.3 (2)
C7-N3-N2	113.29 (18)	O1-C6-N2	124.7 (2)
C7-C8-C9	130.5 (2)	O1-C6-C5	120.6 (2)
C15-N4-C14	109.56 (19)	N2-C6-C5	114.64 (19)

1651 independent reflections 1554 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0653P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

-3

Extinction correction: SHELXL97

Extinction coefficient: 0.022 (3)

+ 0.3045P]

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

 $\begin{aligned} R_{\rm int} &= 0.023\\ \theta_{\rm max} &= 25.0^\circ\\ h &= -11 \rightarrow 11\\ k &= -11 \rightarrow 9\\ l &= -19 \rightarrow 18 \end{aligned}$

Table 2

Hydrogen-bond geometry (Å, °).

0.91 (3)	2.12 (3)	3.015 (3)	169 (2)
0.78 (3)	2.15 (3)	2.917 (3)	168 (3)
0.82	1.96	2.778 (3)	179
	0.91 (3) 0.78 (3) 0.82	0.91 (3) 2.12 (3) 0.78 (3) 2.15 (3) 0.82 1.96	0.91 (3) 2.12 (3) 3.015 (3) 0.78 (3) 2.15 (3) 2.917 (3) 0.82 1.96 2.778 (3)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) x + 1, y + 1, z.

N-bound H atoms were located in a difference Fourier map and refined freely. C- and O-bound H atoms were included in calculated positions and refined using a riding-model approximation, with C-H = 0.93–0.97 Å and O-H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C and O)$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

References

Bruker (1999). SHELXTL (Version 5.10), SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2

Packing view of (I), showing the intermolecular hydrogen bonds (dashed lines).

- Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546.
- Guo, M.-J., Sun, J.-C., Jing, Z.-L., Yu, M. & Chen, X. (2006). Acta Cryst. E62, 0820–0821.
- Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, 03208–03209.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yu, M., Chen, X., & Jing, Z.-L. (2005). Acta Cryst. E61, 01345-01346.